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1. Sigma Algebras

Definition 1. Let S be a set and let E ⊂ P(S).
We say that E is a sigma algebra on S if

(S1) E is nonempty;
(S2) Ac ∈ E for any A ∈ E.
(S3) ∪∞

i=1Ai ∈ E for any infinite sequence {Ai | i ∈ N} ⊂ E;

That is, a sigma algebra on S is a nonempty collection of subsets of S which is
closed under complement and countably infinite unions.

Proposition 1. Let S be a set and let E be a sigma algebra on S. Then

(a) ∅, S ∈ E;
(b) A ∪B ∈ E for any A,B ∈ E;
(c) A ∩B ∈ E for any A,B ∈ E;
(d) ∪n

i=1Ai ∈ E for any finite sequence {A1, . . . , An} ⊂ E;
(e) ∩n

i=1Ai ∈ E for any finite sequence {A1, . . . , An} ⊂ E;
(f) ∩∞

i=1Ai ∈ E for any infinite sequence {Ai | i ∈ N} ⊂ E.

Thus a sigma algebra on S is a collection of subsets of S which contains the
empty set and the whole set, and is closed under complement, countable unions,
and countable intersections.

The intersection of sigma algebras is a sigma algebra; thus given any collection
C of subsets of S, the intersection of all sigma algebras containing C is a (sigma)
algebra on S; it is the smallest sigma algebra on S which contains C, and is known
as the sigma algebra generated by C.

The (sigma) algebra generated by C can be explicitly obtained by taking all
possible unions of sets in C, then taking their complements, then taking unions of
these and the complements, and continuing the process indefinitely.
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2. Probability Spaces

Definition 2. A probability space (S,E, P ) is a set S, called a sample space, together
with a sigma algebra E of subsets of S, and a function

P : E → [0, 1]

satisfying

(P1) P (S) = 1;
(P2) P (∪∞

i=1Ai) =
∑∞

i=1 P (Ai) for any sequence {Ai | i ∈ N} ⊂ E with Ai∩Aj =
∅ when i ̸= j.

The elements of S are called outcomes. The members of E are called events. The
function P is called a probability measure. The number P (E) is called probability
of event E.

Proposition 2. Let (S,E, P ) be a probability space. Let A,B ∈ E. Then

(a) P (∅) = 0;
(b) P (Ac) = 1− P (A);
(c) A ⊂ B ⇒ P (A) ≤ P (B);
(d) P (A ∪B) = P (A) + P (B)− P (A ∩B);

Corollary 1. Boole’s Inequality
Let (S,E, P ) be a probability space. Let A,B ∈ E. Then

P (A ∪B) ≤ P (A) + P (B).

3. Continuous Random Variables

Definition 3. Let (S,E, P ) be a probability space and let X : S → R be a function.
We say that X is a continuous random variable if X−1((−∞, b]) ∈ E for every
b ∈∈ R. Define P (X ∈ [a, b]) = P (X−1([a, b])).

A function ρ : R → R is called a probability density function for X if

P (a ≤ X ≤ b) =

∫ b

a

ρ(x) dx.

The mean of X is

µ =

∫ ∞

−∞
xρ(x) dx.

The standard deviation of X is

σ =

√∫ ∞

−∞
(x− µ)2ρ(x) dx.
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4. Normal Distribution

4.1. The Derivation. Consider a function ρ with these properties:

(a) Its rate of growth at x is proportional to xρ(x);
(b) ρ has a local maximum at x = 0;
(c) ρ has an inflection point at x = 1;
(d) the area under the curve equals 1.

By (a), ρ satisfies the differential equation

ρ′(x) = Bxρ(x)

for some constant B. Separate the variables to solve this differential equation:∫
ρ′(x)

ρ(x)
dx=

∫
Bxdx,

so

log(ρ(x)) =
Bx2

2
+ C,

and letting A = eC , we have

ρ(x) = Ae
Bx2

2 ,

where A is positive.
By (b), ρ has a local maximum at x = 0. Now

ρ′(x) = ABxe
Bx2

2 ,

which equals zero only if x = 0; for this to indicate a local maximum, we must have
ABx < 0 for x > 0; this indicates that B is negative.

By (c), ρ has an inflection point at x = 1. Now

ρ′′(x) = ABe
Bx2

2 [1 +Bx2],

which equals zero when 1 + Bx2 = 0, or x = ± 1√
−B

. So we must have B = −1.

Thus

ρ(x) = Ae
−x2

2 .

By (d),
∫
R ρ(x) dx = 1. Using vector calculus, it is possible to compute that∫

R
e

−x2

2 dx =
√
2π.

Thus A = 1√
2π

, so

ρ(x) =
1√
2π

e
−x2

2 .
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4.2. The Limit of the Binomial Distributions. We wish to see how to view
the normal distribution as the limit of binomial distributions. In order to compare
the binomial distributions for increasing values of n, we wish to shift and compress
the distribution so that the mean is zero and the variance is one.

Let Xn denote a random variable with range {0, h, 2h, . . . , nh} with probabilities
given by successive terms of (p+ q)n. We have

P (Xn = rh) =
n!

r!(n− r!)
.

Then the mean is µ = nph and the variance is σ2 = npqh2.
Our initial goal is to understand the rate of change of the binomial distribution.

Let y = P (X = rh) and y′ = P (X = (r + 1)h). Set ∆y = y′ − y, so that

∆y =
n!

(r + 1)!(n− r − 1)
pr+1qn−r−1 − n!

r!(n− r)!
prqn−r

=
n!(n− r)p− n!(r + 1)q

(r + 1)!(n− r)!
prqn−r−1

=
n!prqn−r−1

(r + 1)!(n− r)!

(
(n− r)p− (r + 1)q

)
=

n!prqn−r−1

(r + 1)!(n− r)!

(
np− r(p+ q)− q

)
=

n!prqn−r

r!(n− r)!
· 1

(r + 1)q
·
(
np− r − q

)
= y · np− r − q

(r + 1)q
(Equation 1).

Let x = rh− µ = rh− nph, so that x is now measured from the mean. Now

r =
x

h
+ np and r + 1 =

x

h
+ np+ 1.

Thus

(np− r)h = −x and (r + 1)h = x+ h+ nph.

Multiply top and bottom of the righthand side of Equation 1 by h2 to get

∆y = y ·

(
(np− r)h− qh

)
h(

x+ h+ nph

)
qh

= y · (−x− qh)h

npqh2 + (x+ h)qh
(Equation 2).

Recall that the variance is σ2 = npqh2. We now set h = (npq)−1/2, which fixes
σ = 1. We note that h → 0 as n → ∞. Set ∆x = h and divide both sides of the
last equation by h to get

∆y

∆x
= y · (−x− hq)

1 + (x+ h)qh
.

Take the limit as n → ∞ to compute that derivative:

dy

dx
= lim

∆x→0

∆y

∆x
= lim

h→0
y · (−x− hq)

1 + (x+ h)qh
= −yx.
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4.3. The Differential Equation. Thus the limit of the binomial distributions,
normalized so that µ = 0 and σ2 = 1, satisfies the differential equation

dy

dx
= −yx.

We solve this by separation of the variables:

1

y

dy

dx
= −x∫

1

y

dy

dx
dx =

∫
−x dx∫

1

y
dy =

∫
−x dx

log y = −x2

2
+ c

y = e−x2/2+C

Letting A = eC , we have

y = Ae−x2/2.
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4.4. The Constant of Integration. We now show how a change of variable allows

us to compute
∫
R e−x2/2 dx, without actually finding an antiderivative for e−x2

.

Proposition 3. ∫
R
e−x2

dx =
√
π.

Proof. Let I =
∫
R e−x2

dx. Then

I2 =

(∫
R
e−x2

dx

)(∫
R
e−x2

dx

)
=

(∫
R
e−x2

dx

)(∫
R
e−y2

dy

)
since x is a dummy variable

=

(∫
R

(∫
R
e−x2

dx

)
e−y2

dy

)
since I is a constant

=

∫∫
R2

e−x2

e−y2

dx dy since y is constant with respect to x

=

∫∫
R2

e−(x2+y2) dx dy by properties of exponents

We now use a change of variables, coverting rectangular to polar coordinates. The
Jacobian for this transformation is dx dy = r dr dθ. Since x2 + y2 = r2, we have

I2 =

∫∫
R2

e−(x2+y2) dx dy

=

∫ 2π

0

∫ ∞

0

re−r2 dr dθ now let u = −r2, so du = −1

2
rdr

= −1

2

∫ 2π

0

[
e−r2

]∞
0

dθ

= −1

2

∫ 2π

0

[0− 1] dθ

=
1

2

∫ 2π

0

dθ

= π.

Thus I =
√
π. □

Corollary 2. ∫
R
e−x2/2 dx =

√
2π.

Proof. Let u =
x√
2
. Thus du =

dx√
2
, so dx =

√
2du, so∫

R
e−x2/2 dx =

√
2

∫
R
e−u2

du =
√
2
√
π =

√
2π.

□
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Definition 4. Let (S,E, P ) be a probability space and let X : S → R be a random
variable. We say the X is normally distributed if it has probability density function

ρX(x) =
1√
2πσ

e(
x−µ
σ )2/2.

In this case, the mean of X is µ and the standard deviation of X is σ.
The standard normal distribution is a normal distribution with µ = 0 and σ = 1:

ρ : R → R given by ρ(x) =
1√

2πex2
.

Let X be a normally distributed random variable with distribution function ρX .
The z-value of x ∈ R with respect to X is the signed number of standard deviations
that x is away from the mean µ. This is clearly given by the following function.

The z-transform is the function

z : R → R given by z(x) =
x− µ

σ
.

Given a z-value, we may retrieve the original raw score by noting that x = σz+µ.
Let Z = X−µ

σ . Then P (a ≤ X ≤ b) = P (z(a) ≤ Z ≤ z(b)). We use the
to compute probabilities for any normal distribution using the standard normal
distribution.
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Example 1. At a large hospital, the average blood sodium value is µ = 137
with standard deviation σ = 3.94. Assume that the sodium values are normally
distributed.

(a) Find the probability of a sodium value in the range 140 < x < 145.
(b) Find the probability of a sodium value in the range x > 150.

Solution. For (a), we have

P (140 < X < 145) = P (z(140) < Z < z(145))

= P

(
140− 137

3.94
< Z <

145− 137

3.94

)
= P (0.761 < Z < 2.03)

= P (Z < 2.03)− P (Z < 0.761)

= .9788− .7764

= .2024.

So, the probability is approximately 20 %.
For (b), we have

P (150 < X) = P (z(150) < Z)

= P

(
150− 137

3.94
< Z

)
= P (3.30 < Z)

= 1− P (Z < 3.30)

= 1− .996

= .004.

So, in this case, the probability is about .4 %, or about 1 in 250 patients. □

Normal Approximation to the Binomial Distribution
Use µ = np and σ =

√
npq.

Example 2. About 53 percent of voters in 2008 voted for Obama. Given a random
sample of 892 voters, find the probability that more than 500 of them voted for
Obama.

Solution. Using the binomial distribution, we would set p = .53 and n = 892,
compute P (X = r) =

(
n
r

)
pr(1− p)n−r for each r > 500, and add these numbers.

Using the approximation, set µ = np = 892(.53) = 472.76 and σ =
√
npq =√

892(.53)(.47) = 14.9. Then

P (X > 500) = P

(
Z >

500− 472.76

14.9

)
= 1− P (Z < 1.83) = 1− .9664 = .0336.

□

Normal Approximation to the Poisson Distribution
Use µ = λ and σ =

√
λ.
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